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1. INTRODUCTION

Consider the vibrations of a circular membrance with a circular core, Wang [1] showed that
when the core diameter shrinks to zero, the frequency decreases to that of a circular
membrane without a central core. This means pinpoint constraints, while a!ecting
vibration mode, do not a!ect the frequency.

The present note studies whether this phenomenon would extend to membrane with an
internal line constraint. Unlike a circular core, the line constraint does not change the
membrane area. We ask, how does the frequency change when the length of the line shrinks
to zero?

Related literature on internal line constraints are few. Gruner [2] studied the equivalent
of a rectangular membrance with a rectangular core, the latter can be shrunk to a line.
Veselor and Gaydar [3] considered a circular membrane with a central, cross-shaped line
constraint. Rozzi et al. [4] found frequencies for the elliptic membrane with an internal
confocal strip. None of these authors considered asymptotic case when the constraint is very
small.

2. ELLIPTIC MEMBRANE WITH AN INTERNAL CONFOCAL STRIP

First, consider the elliptic membrane with a line constraint which connects the foci
(Figure 1(a)). As the focal distance approaches zero, the outer elliptical boundary
approaches a circle. Thus, its frequency behavior mimics that of a circular membrane with
a short centered strip.

The governing Helmholtz equation is

D=#k2="0, (1)

where = is the vertical displacement and k is the frequency normalized by ¸

Jdensity/tension per length. ¸ is a characteristic length de"ned by Jarea/n . The elliptic
co-ordinates, (m, g) are related to the Cartesian co-ordinates (x, y) by

x"c cosh m cos g, y"c sinh m sin g, (2)
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Figure 1. (a) Elliptic membrane with a centered strip, (b) circular membrane with a centered strip.
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where 2c is the distance between the foci. Equation (1) can be separated by="W (m)U(g)
resulting in Mathieu equations [4, 5]

d2W
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#[h2 cosh2 m!b] W"0,

d2U

dg2
#[b!h2 cosh2 g] U"0, (3, 4)

where h"kc and b is a separation constant. For the fundamental frequency, W is the even
radial Mathieu function of zeroth order while the solution of W, with the boundary
conditions W(0)"0, W (o)"0, gives the characteristic equation
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and the B
n

are coe$cients depending on h and b.
Since lengths are normalized by ¸, the family of ellipses has the same area as the circle of

radius ¸, thus c"(cosh o sinh o)~1@2. We shall investigate the asymptotic properties of k as
cP0 and oPR. Since c is small, we expand
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where d
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(c) is an asymptotic sequence to be determined. Then
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where c+0)5772. Comparing the leading orders gives
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The "rst root, k
0
"2)4048, is the fundamental frequency of the circular membrane. The next

orders yield
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We see that the fundamental frequency, for small c, is a quadratic in Dln cD~1. The property
would be re#ected for a circular membrane with a short centered strip.

3. CIRCULAR MEMBRANE WITH A CENTERED STRIP

Consider the circular membrance with an interior line constraint of length 2c (Figure
1(b)). Since an exact formula for the characteristic equation does not exist, the frequency will
be found numerically by eigenfunction expansions and matching.

Decompose the membrane into two regions; for region A (r)c) the general solution to
equation (1) which is even in h and satis"es="0 on the strip is
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Here, A
n
are coe$cients to be determined. The factor (2n)! is to ensure that A

n
would not be

too large. The general solution for region B (r*c) which is even in h and satis"es="0 on
r"1 is
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Truncate A
n
and C

n
to N#1 terms. Multiplying equation (22) by cos(2mh) and integrating

from 0 to n/2 give
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Similarly, equation (23) gives
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Equations (24)}(27) represent 2N#2 homogeneous equations and unknowns. For the
non-trivial solution, the determinant of the coe$cients is set to zero. This gives the
characteristic equation which is solved for the minimum value of k. Accuracy is improved
by increasing N. Table 1 shows that the convergence occurs when N is about 35.

The characteristic equation is in closed form when c"0 or 1. For c"0, the geometry is
the circle and the fundamental frequency is the "rst root of J

0
(k)"0, or k"2)4048. For

c"1, the geometry is the semi-circle and the fundamental frequency is the "rst root of
J
1
(k)"0, or k"3)8317. For 0(c(1, the method described above is used. Table 2 shows

the result for all values of strip lengths c.
TABLE 1

Convergence of k

N c"0)1 c"0)3 c"0)5 c"0)7 c"0)9

5 3)052 3)478 3)740 3)821 3)831
10 3)057 3)489 3)748 3)823 3)831
15 3)058 3)493 3)751 3)824 3)831
20 3)059 3)495 3)752 3)824 3)831
25 3)060 3)496 3)753 3)824 3)831
30 3)061 3)497 3)754 3)824 3)831
35 3)061 3)498 3)754 3)824 3)831
40 3)061 3)498 3)754 3)824 3)831



TABLE 2

Fundamental frequency for circular membrane with line constraint

c 0 0)001 0)01 0)1 0)2 0)3 0)4 0)5 0)6 0)7 0)8 0)9 1)0

k 2)4048 2)629 2)741 3)061 3)297 3)498 3)655 3)754 3)804 3)824 3)830 3)831 3)8317

Figure 2. Fundamental frequency of a circular membrane with a centered strip for small c. Circles are computed
values. Line is the asymptotic formula from equation (29).
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Of interest is the behavior for small c. Guided by our analysis for the elliptic membrane,
we propose a similar asymptotic formula
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The value of k
0

is the basic frequency of the circular membrane as shown from the limit for
the elliptic membrane as cP0. The other coe$cients k

1
and k

2
may be di!erent and we

used a least-squares "t on our numerical results for the range c"10~2 to c"10~6

(numerical instability occurs for c(10~6). Figure 2 shows the frequency as a function of
Dln cD~1 and the curve "t

k"2)4048#
1)55

Dln cD
!

0)012

Dln cD2
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Equation (29) describes the rapid rise of fundamental frequency as c is increased from zero.
Note the di!erences in the coe$cients k

1
and k

2
as compared to the elliptic membrane case.

4. DISCUSSIONS

A membrane with an internal strip has similarities and di!erences in comparison to that
of an internal circular core. In both cases, for an in"nitesimal constraint dimension, the
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fundamental frequency is the same as that without the constraint, and the increase is
proportional to Dln cD~1 which is singular. For large constraint dimensions c, the frequency
behavior is quite di!erent. The curvature of k(c) is negative for the line constraint as
k approaches a constant value (3)8317) when cP1 while the curvature is positive for the
circular core constraint when cP1. In fact, if the membrane is circular with a circular core,
the frequency approaches in"nity as cP1. This is because the membrane area of the line
constraint does not change while the circular core decreases the membrane area by the
square of the core radius.

REFERENCES

1. C. Y. WANG 1998 Journal of Sound and <ibration 215, 195}199. On the polygonal membrane with
a circular core.

2. L. GRUNER 1967 IEEE ¹ransactions on Microwave ¹heory and ¹echniques MTT-15, 483}485.
Higher order modes in rectangular coaxial lines.

3. G. I. VESELOV and V. I. GAYDAR 1970 Radio Engineering 25, 147}149. Analysis of a circular
waveguide with an internal cross-shaped conductor.

4. T. ROZZI, L. PIERANTONI and M. RONZITTI 1997 IEEE ¹ransactions on Microwave ¹heory and
¹echniques MTT-45, 1778}1784. Analysis of the suspended strip in elliptical cross section by
separation of variables.

5. P. M. MORSE and H. FESHBACH 1953 Methods of ¹heoretical Physics. New York: McGraw-Hill,
chapter 6.


	1. INTRODUCTION
	2. ELLIPTIC MEMBRANE WITH AN INTERNAL CONFOCAL STRIP
	Figure 1

	3. CIRCULAR MEMBRANE WITH A CENTERED STRIP
	TABLE 1
	TABLE 2
	Figure 2

	4. DISCUSSIONS
	REFERENCES

